TIGER

Journal Articles: 23 results
Using Hydrogen Balloons To Display Metal Ion Spectra  James H. Maynard
Describes a procedure for igniting hydrogen-filled balloons containing metal salts to obtain the brightest possible flash while minimizing the quantity of airborne combustion products.
Maynard, James H. J. Chem. Educ. 2008, 85, 519.
Atomic Properties / Structure |
Atomic Spectroscopy |
Gases |
Metals |
Solutions / Solvents
Mustard Gas: Its Pre-World War I History  Ronald J. Duchovic and Joel A. Vilensky
A review of the history of the synthesis of mustard gas by 19th century European chemists highlights the increasing sophistication of the chemical sciences during this time.
Duchovic, Ronald J.; Vilensky, Joel A. J. Chem. Educ. 2007, 84, 944.
Applications of Chemistry |
Atomic Properties / Structure |
Toxicology
Factors That Influence Relative Acid Strength in Water: A Simple Model  Michael J. Moran
The pKa's of diverse aqueous acids HA correlate well with the sum of two gas-phase properties: the HA bond-dissociation enthalpy and the electron affinity of the A radical. It is suggested that rather than bond strength alone or bond polarity, the sum of the enthalpies of these two steps is a fairly good indicator of relative acidity.
Moran, Michael J. J. Chem. Educ. 2006, 83, 800.
Acids / Bases |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Free Radicals
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
"We Actually Saw Atoms with Our Own Eyes". Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School  Hannah Margel, Bat-Sheva Eylon, and Zahava Scherz
The purpose of this exploratory study was to examine the feasibility and potential contribution of using the STM as a learning tool in junior high school (JHS) to support instruction about the particulate nature of matter.
Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava. J. Chem. Educ. 2004, 81, 558.
Atomic Properties / Structure |
Kinetic-Molecular Theory |
Nanotechnology |
Surface Science |
Learning Theories |
Student-Centered Learning |
Laboratory Equipment / Apparatus
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Periodic Table Live! 3rd Edition: Abstract of Special Issue 17  Nicholas B. Adelman, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, Alton J. Banks, John C. Kotz, William R. Robinson, and Susan Young
CD-ROM containing an interactive journey through the periodic table; includes information about each element, biographies of discoverers, videos of reactions, sources and uses, macro and atomic properties, and crystalline structures.
Adelman, Nicholas B.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Banks, Alton J.; Kotz, John C.; Robinson, William R.; Young, Susan. J. Chem. Educ. 2002, 79, 1487.
Descriptive Chemistry |
Periodicity / Periodic Table |
Solid State Chemistry |
Atomic Properties / Structure |
Physical Properties |
Reactions |
Crystals / Crystallography
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
Rediscovering the wheel: The flame test revisited  Ragsdale, Ronald O.; Driscoll, Jerry A.
Exciting metallic salts in burning methanol to produce colors visible throughout a large lecture hall.
Ragsdale, Ronald O.; Driscoll, Jerry A. J. Chem. Educ. 1992, 69, 828.
Atomic Properties / Structure |
Metals
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
A simulation of Rutherford experiment  Hau, Kit-Tai
An overhead demonstration simulating Rutherford's experiment to detect the atomic nucleus.
Hau, Kit-Tai J. Chem. Educ. 1982, 59, 973.
Atomic Properties / Structure |
Nuclear / Radiochemistry
Developing models: What is the atom really like?  Records, Roger M.
Using physical and computer models to illustrate historical changes in our view of the atom.
Records, Roger M. J. Chem. Educ. 1982, 59, 307.
Atomic Properties / Structure |
Quantum Chemistry
Spectroscopic cation analysis using metal salt pills  Barnard, Sister Marquita
Making metal salt pills for spectroscopic cation flame analysis using a Carver press.
Barnard, Sister Marquita J. Chem. Educ. 1980, 57, 153.
Spectroscopy |
Atomic Spectroscopy |
Atomic Properties / Structure
Producing flame spectra  Smith, Douglas D.
Adding the desired salt to canned heat.
Smith, Douglas D. J. Chem. Educ. 1979, 56, 48.
Atomic Properties / Structure |
Atomic Spectroscopy
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
The use of tables of data in teaching: The students discover laws about ionization potentials  Haight, G. P., Jr.
Students are asked to see what they can discover in a table of ionization potentials of the elements like that presented in most general chemistry textbooks.
Haight, G. P., Jr. J. Chem. Educ. 1967, 44, 468.
Atomic Properties / Structure |
Periodicity / Periodic Table
Geometry of the f orbitals  Becker, Clifford
Presents physical models of the f orbitals.
Becker, Clifford J. Chem. Educ. 1964, 41, 358.
Atomic Properties / Structure
Three-dimensional models of atomic orbitals  Hoogenboom, Bernard E.
Using balloons to illustrate three-dimensional models of atomic orbitals.
Hoogenboom, Bernard E. J. Chem. Educ. 1962, 39, 40.
Atomic Properties / Structure
Philosophical antecedents of the modern atom  Gorman, Mel
The purpose of this paper is to present a brief survey of Greek atomism, its rise, recession, and revival.
Gorman, Mel J. Chem. Educ. 1960, 37, 100.
Atomic Properties / Structure
Letters  Bowden, S. T.
The author calls for the standardization of the periodic table.
Bowden, S. T. J. Chem. Educ. 1953, 30, 426.
Periodicity / Periodic Table |
Atomic Properties / Structure