TIGER

Journal Articles: 21 results
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Solving Quantum Number Problems: An Examination of Novice Performance in Terms of Conceptual Base Requirements  Dilek Ardac
Study to understand gaps and conceptual inconsistencies that may block successful performance when solving quantum number problems and improve problem-solving performance by giving students an opportunity to reflect on their thought processes as they solve problems.
Ardac, Dilek. J. Chem. Educ. 2002, 79, 510.
Quantum Chemistry |
Learning Theories
Have Orbitals Really Been Observed?  Eric R. Scerri
Recent reports claiming to have observed textbook d orbitals are analyzed and it is argued that what was observed indirectly, and not for the first time, was actually electron density. It is also suggested that the tendency to use the terms electron density and orbital to mean the same thing will give rise to confusion in chemical education.
Scerri, Eric R. J. Chem. Educ. 2000, 77, 1492.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
How Good Is the Quantum Mechanical Explanation of the Periodic System?  Eric R. Scerri
The use of quantum mechanics, or more specifically, orbitals and electronic configurations in teaching general chemistry is now such a widespread trend that it would be utterly futile to try to reverse it. Moreover, orbitals and configurations have been extremely useful in providing a theoretical framework for the unification of a multitude of chemical facts.
Scerri, Eric R. J. Chem. Educ. 1998, 75, 1384.
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
Deducing the Shell Model from Ionization Energies and the Use of Models in Introductory Chemistry  Ronald J. Gillespie, Richard S. Moog, and James N. Spencer
A major objection of Rioux and DeKock is the statement in the authors' earlier paper that electron repulsion is responsible for the relative ionization energies of H and He. The commentators work clearly shows that a quantum mechanical treatment of this problem reveals that kinetic energy considerations play a crucial role in these values. However, although their criticism is appropriate in the context of this more sophisticated QM treatment, it does not in any way invalidate the authors original paper, the goal of which was to provide a model, namely the shell model, for the electronic structure of atoms that is consistent with experimental ionization energies.
Gillespie, Ronald J.; Moog, Richard S.; Spencer, James N. J. Chem. Educ. 1998, 75, 539.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
In Defense of Quantum Numbers  Robert M. Richman
A recent paper has argued that the derivation of the periodic table using quantum numbers is a topic that should be eliminated from introductory chemistry courses because it is too abstract, mysterious, and esoteric. A rebuttal is offered based on the claim that it would be wrong to omit discussions of the inductive approach of Mendeleev and the deductive approach initiated by Schroedinger, because they compose the consummate example of that interaction of empirical and rational epistemologies that defines how chemists think.
Richman, Robert M. J. Chem. Educ. 1998, 75, 536.
Learning Theories |
Periodicity / Periodic Table |
Quantum Chemistry
Quantum Analogies on Campus  Ngai Ling Ma
By using examples drawn from daily life of students, simple analogies are used to illustrate a few quantum concepts which include: wave function, quantum numbers, states, degeneracy of states, transitions, selection rules, probability and probability density, operators and wave-particle dualism.
Ma, Ngai Ling. J. Chem. Educ. 1996, 73, 1016.
Quantum Chemistry
Some Analogies for Teaching Atomic Structure at the High School Level  Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel
Analogies for orbitals, Hund's rule, and the four quantum numbers.
Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel J. Chem. Educ. 1994, 71, 733.
Atomic Properties / Structure |
Quantum Chemistry
Introducing chemistry to chemical engineering students   Bottani, Eduardo Jorge
Description of changes introduced to a general chemistry course for chemical engineering students.
Bottani, Eduardo Jorge J. Chem. Educ. 1993, 70, 935.
Quantum Chemistry |
Materials Science
Pictorial analogies VII: Quantum numbers and orbitals   Fortman, John J.
Quantum number n is related to the size of a house, l is related to the shape of a house, and m is compared to the direction the house is facing. Pictures are included.
Fortman, John J. J. Chem. Educ. 1993, 70, 649.
Quantum Chemistry |
Atomic Properties / Structure
The disco analogy   Battino, Rubin
A fantastic idea in helping students visualize the quantum mechanical model of the atom.
Battino, Rubin J. Chem. Educ. 1991, 68, 285.
Atomic Properties / Structure |
Quantum Chemistry
The correct interpretation of Hund's rule as applied to "uncoupled states" orbital diagrams  Campbell, Mark L.
The application of Hund's rule by general chemistry students is appropriate as long as Hund's rule is interpreted correctly.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 134.
Atomic Properties / Structure |
Quantum Chemistry
Another quantum number?  Perrino, Charles T.; Peterson, Donald L.
The presentation of the concept of "spin" in many textbooks is inconsistent, misleading, and in some cases even incorrect.
Perrino, Charles T.; Peterson, Donald L. J. Chem. Educ. 1989, 66, 623.
Quantum Chemistry
Quantum chemistry  Davenport, Richard P., Capt.
Videocassette on quantum numbers.
Davenport, Richard P., Capt. J. Chem. Educ. 1982, 59, 260.
Quantum Chemistry |
Atomic Properties / Structure
Wolfgang Pauli (1900-1958): A brief anecdotal biography   Festa, Roger R.
A brief biography about one of quantum mechanics' most important intellectual contributors.
Festa, Roger R. J. Chem. Educ. 1981, 58, 273.
Quantum Chemistry
Using the Aufbau principle   Whitmer, John C.
This question is written with the belief that general chemistry students should not only attain an understanding of the Aufbau principle enabling them to write down electron configurations, they ought also recognize the correspondence between the quantum numbers and the structures of the periodic table.
Whitmer, John C. J. Chem. Educ. 1978, 55, 515.
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
The spectrum of atomic lithium. An undergraduate laboratory experiment  Miller, Kenneth J.
The author gives a background on the theory and experimental procedure for the spectrum of atomic lithium.
Miller, Kenneth J. J. Chem. Educ. 1974, 51, 805.
Quantum Chemistry |
Spectroscopy |
Quantitative Analysis |
UV-Vis Spectroscopy |
Atomic Properties / Structure
Mathematics for scientists. Mathematical methods in the physical sciences. Mathematics for quantum chemistry (Bak, Thor A.; Lichtenberg, Jonas; Boas, Mary L.; Anderson, Jay Martin)  Moore, Walter J.

Moore, Walter J. J. Chem. Educ. 1967, 44, 246.
Mathematics / Symbolic Mathematics |
Quantum Chemistry |
Enrichment / Review Materials
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry