TIGER

Journal Articles: 17 results
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a Born¬ĚHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Two multipurpose thermochemical experiments for general chemistry  Wentworth, R. A. D.
Two multipurpose thermochemical experiments are described in this paper.
Wentworth, R. A. D. J. Chem. Educ. 1988, 65, 1022.
Thermodynamics
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Heat of hydration  Dannhauser, Walter
A commonly published experiment can be expanded so that students may obtain the enthalpy of the reaction between anhydrous salts and water.
Dannhauser, Walter J. Chem. Educ. 1971, 48, 329.
Thermodynamics |
Crystals / Crystallography |
Water / Water Chemistry |
Noncovalent Interactions
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry